行任务的最佳几何结构。
比如,一些遥感、通信卫星所用到的天线往往需要巨大的空间延展范围。
而这种巨大的机械结构一定要折叠在狭小的火箭头部,技术上会带来极大不便。
其实,太空工程师曾经设计出很多富有想象力、功能更强大的几何结构的卫星,都因为无法被折叠到火箭里而“胎死腹中”。
在“太空工厂”生产卫星,便可以把卫星的几何结构从发射的桎梏中解脱出来。
由于太空轨道空旷的微重力环境,卫星的结构在理论上可以是任意的。
甚至“太空工厂”可以像蚂蚁筑巢一样,慢慢在太空中建筑出一个比自身大得多、复杂得多的航天器,这将极大地解放太空工程师的设计想象力。
然后就是让更低的卫星结构可靠性要求成为可能。
卫星在太空中的工作环境是真空+微重力,意味着不同零件之间并不会因为重力造成相互挤压。
仅在这个意义上,卫星的力学结构不用再造得多么“结实”。
由于卫星在火箭发射过程中要承受~倍的重力加速度冲击,为了扛住这种强力冲击,卫星从整体到零件都必须特别“结实”。
因此直到今天,不管是卫星的整体结构还是上面的零部件,发射升空前都必须要经过最苛刻的力学冲击和振动测试,以确保整体结构能够在“车祸”一样严酷的冲击+振动环境中完好无损。
这种对可靠性的超高要求,使得卫星所使用的零部件往往要经过千挑万选,非常昂贵,提高了整体造价。
同时,很多性能优势明显却唯独不太结实的结构方案,无法被最终采用。
而在太空中直接制造卫星,则可以避免这些麻烦。
比如,可以把聚合物粉末打包发射到太空,再用太空中的打印设备打印出卫星的机械结构框架。
还可以模块化卫星设计,提供敏捷的卫星修复能力。
所谓模块化的设计理念,就是把卫星拆分成几个标准化的功能模块,就如同手机中的摄像模块、电池模块、天线模块等等。
每一个模块都可以独立生产,并且可以随时像搭积木一样拼装成完整的卫星。
这样做的一个非常巨大的好处,是可以快速、低成本地对太空中的卫星进行维修。
现如今的很多卫星,经常由于动力模块耗损或者天线损坏等局部小毛病导致整体报废。
谷輚
如果在太空中能够快速独立生产出替换的功能模块,再由太空维修机器人将全新的模块进行更换,就可以大大提高卫星在太空中的使用寿命,提高维修速度,并且降低整个卫星系统的维护成本。
而且连制造资源都不用担心,不说那些已经报废的太空垃圾可以回收利用,太空本身蕴藏的资源的就极其丰富。
根据目前科国际科学团发现情况来看,经过地球周边的就有几颗很有价值的小行星,堪称“飞行的财宝箱”。
有一颗被称为型小行星,这个星体的大部分组成物质都是金属,其主要成分是铁和镍等,这都是地球上用途广泛的金属。
然后是一颗名为-的小行星,它的基本组成物质是黄金,价值数万亿联邦币。
还有一颗名为-的巨大宇宙钻石,这是一颗白矮星的结晶,它基本上就是一颗四千米长的钻石。
最牛批的是一颗被科学家称之为-的行星,含有大量的黄金和铂金,现在的市面价值为万万亿联邦币。
当然,这些东西都太大了,还不是二期空间站能啃的动的,但至少二期空间站让不少人都看到了未来。
“好家伙,这空间站也太牛批了!”
“这空间站也太大了吧,一期的单独舱室都比国际空间站的单独舱室要大,现在更是有了直径米的单独舱室,这也太猛了!”
“旋转模拟重力舱才厉害,人类终于发展出模拟重力的科技了。”
“惊了,原来空间站能干这么多事!”
“那这还是空间站吗,感觉都像是太空城市了?”
“说太空城市还早了点,哪有米规模的太
第274章 未来游乐园空间站